Development of Cellulosic Biofuels

Chris Somerville Energy Biosciences Institute UC Berkeley, LBL, University of I Ilinois

Potential of carbon-free energy sources

From: Basic Research Needs for Solar Energy Utilization, DOE 2005

Summary of Syngas-Liquids Processes

Conversion of sugar to alkanes

Huber et al., (2005) Science 308,1446

Perspective

- Economists are helpful for evaluating the feasibility and consequences of alternative scenarios
- Social scientists are helpful for flagging social issues that can block adoption of technology

World Land Use

AMBI O 23,198 (Total Land surface 13,000 M Ha)

Thinking beyond tofu

- Emissions from meat production equivalent to all transportation fuels
- Cattle are major threats to many ecologically sensitive regions
- Ruminants are a very inefficient source of nutrition
- Can we create acceptable alternatives?

Combustion of biomass *can* provide carbon neutral energy

Combustion of biomass *can* provide carbon neutral energy

But it depends on how the biomass is produced and processed

Problems with corn, soy, rapeseed for biofuels

- Annual crop production leads to soil erosion, fertilizer runoff, loss of soil carbon, nitrous oxide emissions, pesticide effects ...
- Weakly positive for GHG emissions
- Increased feed and food price
- May stimulate production of food on ecologically sensitive acres (indirect effects)

>>A billion acres of agricultural land have been abandoned

Campbell et al., Env. Sci. Technol. (2008) ASAP Article, 10.1021/es800052w

Limited potential of biodiesel

65 biodiesel companies in operation, 50 in construction 2006

Oil potato, oil cane, oilfalfa...

- Accumulate terpenes or alkanes in vegetative tissues
 - Increased solar efficiency
- Cold press tissue in field
 - Environmental benefits
 - Transportation and storage costs decrease
- Costs of conversion to fuels minimal
 - Engineering costs greatly decrease

Knowledge of developmental mechanisms will create entirely new opportunities for producing biomaterials

Ogas et al., Science 277,91

Renewable Fuel Standard (Energy Independence and Security Act of 2007)

US Biomass inventory = 1.3 billion tons

From: Billion ton Vision, DOE & USDA 2005

Potential bioenergy crops tested in the US

English name	Latin name	Photo- synthetic pathway	Yields reported [t DM ha ⁻¹ a ⁻¹] ^a
Crested wheatgrass	Agropyron desertorum	C ₃	16.3
	(Fisch ex Link) Schult.		
Redtop	Agrostis gigantea Roth	C_3	Not available
Big bluestem	Andropogon gerardii Vitman	C_4	6.8–11.9
Smooth bromegrass	Bromus inermis Leyss.	C_3	3.3-6.7
Bermudagrass	Cynodon dactylon L.	C_4	1.0 - 1.9
Intermediate wheatgrass	Elytrigia intermedia [Host] Nevski	C_3	Not available
Tall wheatgrass	Elytrigia pontica [Podp.] Holub	C_3	Not available
Weeping lovegrass	Eragrostis curvula (Schrad.) Nees	C_4	6.8–13.7
Tall Fescue	Festuca arundinacea Schreb.	C_3	3.6-11.0
Switchgrass	Panicum virgatum L.	C_4	0.9-34.6
Western wheatgrass	Pascopyrum smithii (Rydb.) A. Love	C_3	Not available
Bahiagrass	Paspalum notatum Flugge	C_4	Not available
Napiergrass (elephant grass)	Pennisetum purpureum Schum	C_4	22.0-31.0
Reed canary grass	Phalaris arundinacea L.	C_3	1.6 - 12.2
Timothy	Phleum pratense L.	C_3	1.6-6.0
Energy cane	Saccharum spp.	C_4	32.5
Johnsongrass	Sorghum halepense (L.) Pers.	C_4	14.0 - 17.0
Eastern gammagrass	Tripsacum dactyloides (L.) L.	C_4	3.1-8.0

 $^{a}t = Mg.$

From Lewandowski et al., Biomass & Bioenergy 25,335

>1% yield is feasible

Yield of 26.5 tons/acre observed by Young & colleagues in Illinois, without irrigation

Courtesy of Steve Long et al

Harvesting Miscanthus

http://bioenergy.ornl.gov/gallery/index.html

Perennials have little or no erosion

From Oliveira et al in: Jones and Walsh (eds) Miscanthus for Energy and Fibre, 2001

Response of Miscanthus to nitrogen fertilizer

Christian, Riche & Yates Ind. Crops Prod. (2008)

Yield (t/HA)

Some research topics in crop production

Self-incompatibility

- Breeding challenging
- Biotic and abiotic stress
 - A lot of dry or saline land available
- Identification of useful species
 - Non-invasive, high productivity, low input
- I dentification of useful variation
- Nutrient recycling and efficiency
- Nitrogen fixation

The Future

http://genomicsgtl.energy.gov/biofuels/index.shtml