

The Challenges of [high-throughput] Phenotyping

Mount Hood - sept 2008

Topics

- Introducing BASF Plant Science
- Phenotyping, for what purposes?
- What are the challenges?
- High-throughput phenotyping⇒ The TraitMill example
- What is the output?⇒ Some lead examples
- Future developments

BASF Plant Science: a Global Technology Platform

Global R&D Platform

CropDesign at a Glance

- Headquartered in Gent, Belgium; 90 employees
- Founded in 1998 as a spin-off from VIB, acquired in June 2006 by BASF Plant Science
- Focus on the development of high productivity traits by operating a unique rice-based trait discovery platform
- Focus on rice as a commercial crop opportunity and as a model for corn

BASF Plant Science

The BASF approach to gene discovery: unique technology platform

Crop yield improvement

CropDesign

BASF Plant Science

metanomics

Unique and synergistic platform for gene function discovery

Combines visual plant screening & metabolic profiling for gene function analysis

High throughput at 5,000 to 10,000 genes tested per year

- Introducing BASF Plant Science
- Phenotyping, for what purposes?
- What are the challenges?
- High-throughput phenotyping
 The TraitMill example
- What is the output?
 Some lead examples
- Future developments

Trends driving demand for agricultural products

Food & Feed

- UN estimate* on word population:9.2 billion people for 2050
- Rising social standards drive global demand for more processed food (meat consumption in Asia)

Biofuels**

- Worldwide: Programs to support bio-fuel projects
- EU biofuel target: 10% of total transportation fuel by 2020:
 - → 55% of total agricultural land needed to reach the target (in canola)
- To meet the demand we have to double productivity within the next 20 years

Our Projects

- Introducing BASF Plant Science
- Phenotyping, for what purposes?
- What are the challenges?
- High-throughput phenotyping
 The TraitMill example
- What is the output?
 Some lead examples
- Future developments

What are the challenges?

- High Throughput
- Low costs
- Early discovery
- Predictability

Organize the data flow

- > Efficient logistics
- > Automation

- > Model plants
- > Screening strategy
- > Traits
- > LIMS
- > Productivity tools

Key traits

- Seed yield
- Seed number
- Grain filling rate
- 1000 seed weight
- Harvest index
- Heading time
- Development rate
- Root biomass
- Root shoot ratio

- Seed yield
- Seed number
- Grain filling rate
- 1000 seed weight
- Harvest index
- Heading time
- Development rate
- Root biomass
- Root shoot ratio

- Leafy biomass
- Plant height
- Development rate
- Oil content
- Rooty biomass
- Root thickness
- Root shoot ratio

- Introducing BASF Plant Science
- Phenotyping, for what purposes?
- What are the challenges?
- High-throughput phenotyping:⇒ The TraitMill example
- What is the output?Some lead examples
- Future developments

TraitMillTM: Trait Development for Different High-Value Opportunities

Rice with improved yield

Productivity traits for bioenergy crops

Patent filing

Data mgt & analysis

Plant phenotyping

Molecular analysis

Plant transformation

Vector construction

Gene selection

Genes

Annual throughput

>60 validated leads

10s of terrabytes

140,000 plants

300,000 PCRs

>75,000 transformants

1300 constructs

2,000 genes

The TraitMill pipeline

HTP plant evaluation

Evaluation set up

Leaf area

Early vigour Max leaf area After drought

Height

Maximum Gravity centre

Leaf area

Early vigour Max leaf area After drought

Height

Maximum Gravity centre

Greenness index

Before flowering After drought

Leaf area

Early vigour Max leaf area After drought

Height

Maximum Gravity centre

Greenness index

Before flowering After drought

Days to flowering

Root biomass

Root biomass

Root biomass

- **⇒** Area
- **⇒** Length
- **⇒** Thickness
- **⇒** Branching
- **⇒Shoot/Root**

Yield components

Number of panicles

Yield components

Number of panicles

Total number of seeds Flowers per panicle

Number of filled seeds Fertility ("fill rate")

TKW

Total seed yield Harvest index

Yield components

Number of panicles

Total number of seeds Flowers per panicle

Number of filled seeds Fertility ("fill rate")

TKW

Total seed yield Harvest index

Seed dimensions

Width Length Area

Materials tracking

a BASF Plant Science Company

Screening strategies

- Introducing BASF Plant Science
- Phenotyping, for what purposes?
- What are the challenges?
- High-throughput phenotyping
 The TraitMill example
- What is the output?⇒ Some lead examples
- Future developments

Gene selection targets different yield components

A "Phenotype tool kit"

A "Phenotype tool kit"

fillrate

Family stories...

Yield stability...

total greeds

TKW

total vgseed:

TKW

totalygseeds

TKW

filirate

And in the field...

Field Validated Leads

- By end of 2006, 56 Leads tested in at least 1 field trial
- Field confirmation rate close to 50 %

Lead confirmed in field:

positive phenotype observed in TraitMill™ confirmed in 2 field trials

<u>Lead not confirmed in field:</u>

positive phenotype observed in TraitMill™ not confirmed in 2 field trials

Pending:

1 field trial result or conflicting results after 2 trials

- Introducing BASF Plant Science
- Phenotyping, for what purposes?
- What are the challenges?
- High-throughput phenotyping
 The TraitMill example
- What is the output?
 Some lead examples
- Future developments

Integration of Phenotyping & Metabolic Profiling Create Unique Opportunities

Analyze phenotype

Metabolic profiling

Determine yield

Expression profile

- Identify important pathways
- Characterize mode of action
- Rational identification of new lead genes based on pathway knowledge
- Increased efficiency & efficacy of gene discovery

R&D Commercialization Collaboration with Monsanto

- Trait: High yield and abiotic stress tolerance
 - Independent gene discovery programs
 - Joint research pipeline
 - Commercialization through Monsanto
- Crops: corn, soybean, cotton, canola
- Revenue sharing: 60/40 (Mon/BASF)
- Additional coop: Soybean cyst nematode

Monsanto Collaboration

From Discovery through Commercialization

Focus:

- Establishment of a joint technology & commercialization collaboration
- Combination of BASF and Monsanto expertise
- R&D-pipeline for yield and stress tolerance traits
- Corn, soybean, canola, cotton

Structure:

Discovery

- Maintenance of independent discovery programs in each company
- Nomination of projects for development to jointly managed board

Development

- Funding at 50-50 cost sharing
- Potential
 overall budget
 of €1.2 billion/
 \$1.5 billion
 through all phases
 of development

Commercialization

- Emerging products distributed by Monsanto across its three existing commercial channels
- Value sharing at 60% for Monsanto and 40% for BASF

Conclusions

TraitMill: result of continuous improvements

Know-How & Expertise

- Example of cost-effective, highly automated platform for screening yieldenhancement genes
- Large effects (>20%) on yield
- Different yield components: opportunities for trait stacking
- In some cases, increased yield stability
- Phenotypes in the greenhouse confirm under field conditions
- Transferability of transgenic traits to other crops is ongoing

Thank you

