Genomics: Whither Next for the Plant Kingdom?

Jeff Bennetzen University of Georgia

What can we do now?

- Gene discovery: easy (ESTs, genome sequence, annotation)
- * Crude but comprehensive expression analysis: easy
- Mutagenesis: somewhat easy
- * Mapping: slowish, species-specific biology, robust markers
- * Reverse genetics (including transformation): limited number of species, non-trivial
- * Phenotyping: some easy, most important stuff is difficult, slow, expensive and inconsistent
- * Physiology: challenging, disappearing somewhat at the whole plant level
- * Metabolomics, biochemistry, cell biology, development: rate limiting

What genomics approaches are getting better, fast?

- * Sequencing, expression
- * Mapping, association mapping
- * Some reverse genetics (site directed, TILLing, ?)
- Some levels of annotation

What genomics approaches aren't improving apace?

- * Some reverse genetics (e.g., types of tagging)
- * Transgenics
- * Phenotyping
- * Some levels of annotation
- * Phylogenomics: comparative genomics

A Monocot Phylogenetic Tree

What do we need but cannot do yet?

Real time, single cell, non-destructive biology

* Real time, single cell, non-destructive biology

 Sufficiently high throughput non-genomic technologies to keep up with the genomics

* Real time, single cell, non-destructive biology

* Sufficiently high throughput non-genomic technologies to keep up with the genomics

 Very cheap full genome sequence that is de novo assemblysufficient What do we need but cannot do yet?

* Real time, single cell, non-destructive biology

* Sufficiently high throughput non-genomic technologies to keep up with the genomics

* Very cheap full genome sequence that is de novo assemblysufficient

* Access, retrieve and analyze data across platforms

What is really worth doing?

- Basic research: black boxes, blue sky
 - Plant-associated microbial metagenomics
 - Agronomic QTL
 - Comprehensive gene discovery
 - Genetic basis of similarity and difference
 - **Epigenetic connections**
 - Systems biology: pathways and connections
- * Applied (translational) research
 - Crop improvement
 - Sustainability
 - Diversity preservation and use
 - Bioenergy and carbon capture

Structural Problems to Overcome?

- * Megascience and megamanagers
 - A great way to do incremental research, no great history of transformational discovery
 - Necessary, but what is the right balance
 - Small projects empower broadest community, especially young researchers, and increase competition
 - Orphans (crops and questions) not as likely to be lost in the mix
- * Loss of blue sky, risky and long term research
 - Limited funds lead to conservative choices
 - Five year plans run the show (welcome to the USSR, 1957)
 - How about a venture capital model for some portion of public sector funding?